

Amongst those, the choice of anti-metabolite(s) and schedule of administration are probably the most important variables. For example, rapidly growing tumours are less sensitive to the inhibitory effects of HU because of the higher levels of intracellular nucleotide pools [8]. The use of anti-metabolites with different biochemical effects (e.g. cytosine arabinoside, gemcitabine), singly or in combinations with HU, should be considered in order to inhibit different key DNA synthetic pathways inside the cell. Solveing *et al.* [7] have shown that the highest level of DTIC-induced DNA damage (due to adduct formation) in peripheral lymphocytes from treated patients was achieved within 5 h with daily treatment with DTIC 250 mg/m² and most of the DNA damage was repaired within 20 h. This may indicate that longer infusions of HU may be required to effectively block DNA repair synthesis after DTIC, because the duration of depletion of intracellular deoxyribonucleotides by antimetabolites may be critical in preventing cells from repairing damaged DNA. Longer infusions of HU will, however, increase the risk of toxicity to HU [13]. The use of other agents that are more active after depletion of O⁶-alkylguanine-DNA alkyltransferase, such as fotemustine [14], should be assessed in combination with standbreak repair inhibition and DTIC, to maximise the inhibition of repair pathways.

Biochemical modulation of the activity of cytotoxic drugs remains an intriguing aspect of cancer therapy and requires further exploration. Information obtained from experimental systems may not be predictive of outcome in humans because of the difference in cell kinetics and biochemical characteristics of animal and human tissues.

1. Ahmann DL, Creagan ET, Hahn RG, Edmonson JH, Bisel HF, Schaid DJ. Complete responses and long-term survivals after systemic chemotherapy for patients with advanced malignant melanoma. *Cancer* 1989, **63**, 224-227.

Pergamon

2. Comis RL. DTIC (NSC-45388) in malignant melanoma. A perspective. *Cancer Treat Rep* 1976, **60**, 165-176.
3. Mizuno NS, Decker RW. Alteration of DNA by 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (NSC-407347). *Biochem Pharmacol* 1976, **25**, 2643-2647.
4. Meer L, Janzer RC, Kleihues P, Kolar GF. *In vivo* metabolism and reaction with DNA of the cytostatic agent, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC). *Biochem Pharmacol* 1986, **35**, 3243-3247.
5. Pegg AE, Byers TL. Repair of DNA containing O⁶-alkylguanine. *FASEB J* 1992, **6**, 2302-2310.
6. Sashiki R, Margison GP, O'Connor PJ. Mechanisms of carcinogenesis induced by alkylating agents. *Biochim Biophys Acta* 1985, **823**, 111-145.
7. Solveing R, Walles SA, Ringborg U. Induction and time course of DNA single-strand breaks in lymphocytes from patients treated with dacarbazine. *Carcinogenesis* 1991, **12**, 1153-1154.
8. Snyder RD, Van Houten B, Regan JD. The accumulation of DNA breaks due to incision; comparative studies with various inhibitors. In Collins A, Downes CS, Johnson RT, eds. *DNA Repair and its Inhibitors*. Oxford, IRL Press, 1984, 13-33.
9. Lonn U, Lonn S. Inhibition of poly(ADP-ribose) synthetase potentiates cell dacarbazine cytotoxicity. *Biochem Biophys Res Commun* 1987, **142**, 1089-1094.
10. Lunn JM, Harris AL. Cytotoxicity of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC) on mer⁺, mer⁺rem and mer- cell lines: differential potentiation by 3-acetamidobenzamide. *Br J Cancer* 1988, **57**, 54-58.
11. Philip PA, Kaklamani L, Carmichael J, *et al.* The influence of high dose hydroxyurea on the incorporation of 5-iodo-2-deoxyuridine (IUDR) by human bone marrow and tumour cells *in vivo*. *Br J Cancer* 1993, **67**, 644-649.
12. Harris AL. DNA repair and resistance to chemotherapy. *Cancer Surv* 1985, **4**, 601-624.
13. Veale D, Cantwell BMJ, Kerr N, Upfold A, Harris AL. Phase I study of high-dose hydroxyurea in lung cancer. *Cancer Chemother Pharmacol* 1988, **21**, 53-56.
14. Aamdal S, Gerard B, Bohman T, D'Incalci M. Sequential administration of dacarbazine and fotemustine in patients with disseminated malignant melanoma—an effective combination with unexpected toxicity. *Eur J Cancer* 1992, **28A**, 447-450.

European Journal of Cancer Vol. 30A, No. 7, pp. 1029-1035, 1994

Elsevier Science Ltd

Printed in Great Britain

0959-8049/94 \$7.00+0.00

0959-8049(94)E0184-6

Feature Article

Cancer Vaccines

A.G. Dalgleish

FASHION TENDS to come full circle every decade or so. Consider tumour immunology and the attempted development of cancer 'vaccines' as treatment. Those few individuals attempting to treat human cancer with 'immunotherapy' a decade or more ago were very much marginalised by the mainstream therapists. Today they are undergoing a rehabilitation, in part made possible by the biotechnology revolution and the ability to dissect and alter the immune responses to tumours. A century ago, dogs and donkeys were used to raise sera against human tumours to treat

cancer patients. Similar clinical 'trials' were to be practised for the next few decades even though regressions and clinical improvements were rarely seen (for a review, see Oettgen and Old [1]). Similar studies were revived in the 1950s and 1960s without much success. The advent of monoclonal antibodies and the ability to epitope map immune responses has not had the clinical impact that had been expected except for a few anecdotal remissions. Early studies in mice, where methylcholanthrene-induced sarcoma cells could immunise syngeneic mice so they

Table 1. Long-standing autologous and allogeneic active specific immunotherapeutic trials in man

Trial	Tumour	Author minimum duration [ref]	Comments
Irradiated mixed allogeneic cell vaccine	Melanoma	Morton <i>et al.</i> [7]	Phase II increased survival in stage IIIA and IV
Autologous tumour cells irradiated + BCG	Colorectal	Hanna <i>et al.</i> [8] 9 years	Phase III increased survival in patients with B ₂ -C ₃
Autologous irradiated crymatically dissociated + BCG	Melanoma	Berd <i>et al.</i> [9] 3 years	> 3 cm lymph node removed. Increased survival
Allogeneic cell lysates + Detox adjuvant (Theracine)	Melanoma	Mitchell <i>et al.</i> [10,11] 9 years	Increased survival in advanced disease
Viral lysates, single allogeneic cell line (vaccinia)	Melanoma	Hersey [12] 5 years	Post lymph node resection. Improved survival
Viral lysate allogeneic cells	Melanoma	Wallack <i>et al.</i> [13] 10 years	Stage II? Increased survival?
Polyvalent soluble antigen vaccine	Melanoma	Bystryn <i>et al.</i> [6] 5 years	Stage III
GM2 + BCG (ganglioside)	Melanoma	Livingstone <i>et al.</i> [14] 5 years	Stage III

became resistant to the same tumour, were to be explained by an immune response to a retrovirus of the AKR mouse. The demonstration by Lansteiner and Chase [2] that hypersensitivity to compounds could be transferred from one animal to another, led to the realisation that cellular immunity could play an important role in tumour recognition and rejection. Both major histocompatibility complex (MHC)-restricted (such as cytotoxic T-lymphocytes, cytotoxic T lymphocytes (CTLs), and/or tumour-infiltrating lymphocytes, TILs) and non-MHC-restricted cells such as natural killer (NK) and, more recently, lymphokine-activated killer (LAK) cells are all recognised as having anti-tumour activity.

The recognition that the immune system could be 'pushed' or manipulated into rejecting an established tumour came with the work of Coley [3] who refined earlier observations of a number of workers, such as Fehleisen and Burns, that infectious empyemas occasionally led to resolution of a tumour (this was before the antibiotic era) and developed a collection of heat-killed bacteria (as opposed to live bacteria used by others) that produced what is now known as Coley's toxins. Detailed studies by others of the antitumour activity of these toxins were never conducted, as 'toxins' became unfashionable when the chemotherapy era began. Nevertheless, a highly refined variation on this approach using the BCG bacillus was used by a number of investigators for the treatment of solid tumours until that too became unfashionable, even though BCG was effective at inducing responses in malignant melanoma when used intralesionally although it did not affect survival as well as inducing remissions in bladder cancer when given intravesically [4].

Against this background, a dedicated band of tumour immunotherapists have persisted in trying to improve on the poor response to human vaccine approaches. The main target has been malignant melanoma [5] which is one of the few truly 'immunogenic' human cancers which responds, albeit usually transiently, and occasionally to a number of immunological manipulations including BCG, α -interferon (IFN), interleukin-

2 (IL-2) and tumour vaccination strategies. The latter include using autologous and allogeneic tumour cells which have either been altered by viruses or gene transfer, or selected for their expression of tumour antigens.

There has been a tremendous effort to identify and clone tumour antigens. However, it should be appreciated that true tumour-specific antigens are uncommon in humans as those described in mice are probably provided by retroviral antigens. Human tumour antigens appear to be normal antigens inappropriately expressed which are better described as tumour-associated differentiation antigens (TADA). Many of the antigens associated with melanoma have been described, such as the gangliosides GM2, GD2 and O-acetylated GD3, as well as a lipoprotein and an oncofetal glycoprotein in addition to others. Antigens shed from melanoma cells have been used to create a melanoma vaccine for treatment and used with alum as an adjuvant in a large-scale clinical trial [6]. Variations on this theme are being pursued by a number of investigators, including those using viruses to produce oncolysates as vaccines (Table 1). As human melanomas are heterogeneous, cloning a single antigen or even a few is unlikely to result in efficacy in a large number of people. Hence, a mixture of cell lines selected for maximal expression of several melanoma antigens might be expected to induce a greater response rate. Such an approach has been followed by Morton and his colleagues [7] for nearly three decades. In their most recent study, there appears to be a survival advantage in stage IIIa and IV melanoma patients treated with a mixture of three allogeneic cell lines which express most of the known melanoma antigens, including the one recently cloned by Van der Bruggen and colleagues [15]. The survival advantage is greatest in those patients in which an immune response to the melanoma antigens can be documented. This has also been noted by several other authors including Bystryn and colleagues [6] and Hersey [12].

This work assumes greater relevance given the parallel developments in human cytokine therapy and murine tumour studies.

LESSONS FROM ANIMAL MODELS

Non-specific immunotherapy has been actively investigated over the last few years with regard to the use of interferons and IL-2 in cancer patients. Murine models suggest that *in vitro* IL-

Correspondence to A.G. Dalgleish at the Dept of Cellular and Molecular Sciences, Division of Oncology, St Georges Hospital Medical School, Jenner Wing, Cranmer Terrace, London SW17 0RE.

Received 23 Mar. 1993; accepted 28 Mar. 1993.

2 expanded lymphocytes (LAK cells) combined with IL-2 administration *in vivo*, could cause tumours to regress that did not do so for either approach used independently. The use of LAK cells and subsequently TILs with IL-2 in tumours has been extensively reviewed elsewhere [16, 17]. Briefly, the promise suggested by the mouse model experiments was not realised in human studies, although a few long-term responses were seen in patients with melanoma and renal cell carcinoma. The toxicity associated with the early high-dose treatments coupled with the realisation that it is not the 'dose' but where the short-acting cytokine is placed, had led to the use of gene transfer into TIL cells and into tumour cells. The rationale for inducing IL-2 expression in TIL cells is to induce IL-2 expression in the most appropriate lymphocytes that target the tumour. Although ingenious, this approach has run into considerable problems with regard to the ability of the transferred gene expressing TILs to maintain expression and ability to 'home' to the tumour. A large randomised trial [18] is currently underway to address these issues. As the early enthusiastic reports of this approach have not been confirmed so far (and not for want of enormous financial backing from the NCI), it is reasonable to expect that the responses are neither marked nor long-lived. Even if this approach was to prove useful, it is inherently impractical and will be prohibitively expensive for most health care systems. A more practical approach is to induce the cytokine expression in the tumour cells so the T-cell recognition of tumour antigens is enhanced. There are a large number of animal models in which a tumour cell, modified by the introduction of a cytokine and other genes, loses its tumourigenic properties. Furthermore, tumour cells expressing cytokines used as a vaccine induce an immune response which prevents a challenge of the wild type (untransfected) tumour cell from taking. Unfortunately, this approach is less convincing in treating established tumours when the vaccine is used as a 'therapeutic', although some recent data give grounds for optimism [19].

What is remarkable about these studies is that it would appear that the defect in recognition of tumour cells appears to be at the effector, and not at the effector, arm of the immune response. In other words, that it is theoretically possible to re-programme the immune response so that it will see otherwise invisible tumour cells. Another remarkable feature of these studies is that so many cytokines and other genes are capable of inducing an effective anti-tumour response. Different mechanisms are involved with some cytokines stimulating local inflammatory responses and others a specific immune response. Some do both. Cytokines whose expression in tumour cells renders them non-immunogenic include IL-1 [19], IL-2 [20-24], IL-4 [25, 26],

IL-6 [27-29], IL-7 [30-33], α -IFN [34], α -tumour necrosis factor (TNF) [35, 36], granulocyte colony-stimulating factor (G-CSF) [37] and granulocyte-macrophage CSF (GM-CSF) [38]. Other cytokines have also been reported to induce anti-tumour responses [39]. However, these models are also able to demonstrate the lack of effect on anti-tumour responses by other cytokines such as IL-5 and IL-10 [39, 40]. Whereas some tumour cells are directly inhibited by the insertion of a cytokine gene, the majority of tumour control appears to be due to the stimulation of host effector cells by the activity on the secreted cytokine. Hence some cytokines will work in some contexts [41] better than others and synergistic opportunities abound [42].

As more detailed work on the mechanisms of tumour cell killing is reported, it is clear that there are a variety of anti-tumour pathways that are recruited by different cytokines. Importantly, both local and systemic T-cell-mediated killing mechanisms are both recruited (Table 2). G-CSF induces a local inflammatory immune response whereas IL-2 and γ -IFN induce a T-cell-mediated response. Interestingly, the G-CSF transduced cell line was able to induce tumour regression [37] in contrast to most of the reported studies, although this was in an unusual tumour cell/animal model as the mice required irradiation before the tumour would 'take'. GM-CSF depends on both CD4+ and CD8+ T-cells for its activity and may enhance antigen presentation by recruiting dendritic cells which are powerful antigen-presenting cells [38].

Nevertheless, many of the mechanisms remain unclear and may manifest differently in different clinical scenarios. For example, IL-6 is able to induce tumour-specific CTL and NK, as well as have direct immunoproliferative effects in some tumour models [27], yet acts as an autocrine growth factor in some myelomas [42]. IL-7 requires CD4+ and macrophages to induce an anti-tumour response in some models and CD8+ in others [30-33]. The involvement of macrophages in some of these systems remains unclear as to whether they are assisting in the 'effector' (antigen presenting) arm or having an 'effector' tumoricidal effect.

What extent cytokine-induced inflammation has on the overall anti-tumour response is not clear. Cytokines can act directly on environmental cells such as those of the endothelium and up-regulate adhesion molecules and theoretically alter the angiogenic status of the tumour.

Most of the anti-tumour effects induced by the foregoing do not induce regression of established disease. This is clearly important for designing therapeutic strategies against human cancers. However, one or two exceptions are now being reported. IL-4 can induce a response when injected directly into a tumour

Table 2. Mechanisms of anti-tumour immune responses with cytokine-expressing tumour cells

Cytokine [ref.]	Main effector cells	Other cells probably involved
IL-2 [20-24]	T-CD8	NK (LAK) + PMN, Eos monocytes
IL-4 [25,26]	Eosinophils	CD8 monocytes
IL-6 [27-29]	CD4, CD8	NK monocytes
IL-7 [30-33]	CD4, CD8 monocytes	
γ -IFN [34]	CD8	NK
α -TNF [35,36]	CD4, CD8 monocytes	
G-CSF [37]	PMN	Monocytes, eosinophils, CD8
GM-CSF [38]	CD4, CD8	

[39]. Cytokine-secreting tumour cells such as G-CSF-secreting cell lines already mentioned, GM-CSF-secreting B16 cell [38], IL-2-producing MBT-2 bladder cells [23] and IL-6-secreting D122 Lewis Lung cancer cells have all been reported to induce regression of established tumours or to inhibit the appearance of metastases [29]. Even though the odds are stacked heavily against the tumour cells in these experiments, these are useful models to explore the parameters required to induce meaningful responses. One factor that is clear is that an induced immune response is much more likely to be effective against a small tumour burden than a large one.

OTHER GENES INVOLVED IN INDUCING A PROTECTIVE IMMUNE RESPONSE

Similar anti-tumour immune responses have been reported when HLA genes and co-stimulatory molecules are transfected into tumour cells. In order for the immune system to recognise TADAs, they have to be presented by MHC molecules and it, therefore, makes sense that the tumour will not be seen if MHC presentation of TADA peptides is functionally impaired. Many tumours have lower or absent MHC expression [43-46], and non-immunogenic animal tumours which lack MHC class I expression can be rendered immunogenic when MHC expression is corrected by gene transfer [47-54]. The relevance of the lack of HLA class I expression and clinical progression in some human tumours has shed doubt on the potential relevance for human therapeutic approaches. However, because humans are so MHC (HLA) heterologous, recent studies suggest that not only is the specificity of the allele important but also more than one allele may be necessary to present the full repertoire of tumour antigens to the immune system [55].

Mandelboim and colleagues [55] were able to show that in mice bearing 3LL carcinoma cells, vaccination with double MHC class I transfectants inhibited the generation of metastases whereas single MHC transfectants were only marginally effective at inhibiting the spread of disease.

As it would appear that it is the effector arm of the immune system that is defective, it is not unreasonable to suspect that MHC class II genes should also induce an effective (better?) immune response. There are technical problems though because two genes, both the α and β chain genes, of class II need to be expressed. Another possible problem is the need to have endogenous expression of the invariant chain to obtain functional assembly although the absence of the invariant chain may allow endogenous (viral?) antigens to be associated with class II and this allows an enhanced effectiveness of class II-transfected cells to present TADAs. James and colleagues [56, 57] have reported an enhanced anti-tumour immune response compared to class II transfected cells. Similar results were found in a different tumour system by Ostrand-Rosenberg and colleagues [58-60] who also showed that the positive effect of MHC class II could be negated by deleting the cytoplasmic domain [58].

CO-STIMULATORY MOLECULES

Another way in which antigen presentation of TADAs can be rendered defective is if they do not provide the appropriate co-stimulus (in which case a presented signal results in anergy or tolerance, which could explain the failure of the immune system to see TADAs). A number of studies have now been reported whereby the gene transfer of the co-stimulatory molecule B7 (not to be confused with HLA B7) results in the rejection of tumour cells expressing MHC I and MHC II which remain tumorigenic [61-64]. Indeed, the ability to 'cure' micrometast-

ases has also been reported. More recently, alternative co-stimulatory molecules (B7-2, GL-1) to B7 (which interact with CD28 and CTLA-4) have been identified [65-67]. Alternative pathways have been deduced to exist from experiments in CD28 $-/-$ mice in which cytotoxic T-cells could still be induced [64]. Nevertheless, CD28 signalling is important for both the induction of IL-2 (Th1) and IL-4 (Th2) responses [68, 69]. Perhaps more importantly, B7 prevents anergy [70]. It is, therefore, likely that co-stimulatory pathways are going to be of fundamental importance in designing tumour vaccines. Recently, the ubiquitous heat shock proteins have been shown to induce anti-tumour responses in a similar manner to HLA-transfected tumours. They may be presenting TADA peptides or providing a co-stimulus, or both [71-73].

PRESENTATION

How are tumour vaccines to be presented? Morton's allogeneic cell lines are given following radiation intradermally under the axilla in multiple sites. Augmentation of the immune response with co-administered BCG, cyclophosphamide, cimetidine and indomethacin have all been tried [7]. The approach is eminently practical and without any significant toxicity. A number of ingenious delivery systems are now being tried to deliver cytokines, HLA and co-stimulatory cDNA *in vivo*, such as using cell-sized gelatin chondroitin sulphide microspheres containing the cytokine, mixed with tumour cells, or giving the DNA directly into the tumour with liposomes [74-80].

MELANOMA AND OTHER CANCERS

With several human trials reporting improved survival when antigens or cells are in the adjuvant or metastatic setting, lessons from the above animal experiments give grounds for hope that the status quo can be improved in the near future in melanoma. Trials giving IL-2 [81] and HLA B7 [75] transfected melanoma cells are already underway. Ideally, the goal for an effective cancer vaccine would omit the use of live or irradiated cells altogether and to this end, the search for melanoma-specific antigens to use as a vaccine has been pursued with vigour. Boon and colleagues cloned a tumour-specific antigen named MAGE-1 which is expressed on many melanomas as well as other types of tumours and no normal tissue with the possible exception of the testes. Interestingly, MAGE-1 is expressed on Morton's cell lines. The product of this gene has now been identified and two other MAGE genes identified (MAGE-2 and MAGE-3). More recently, Bakker and colleagues have cloned a glycoprotein gp100 from melanoma which is a specific target for melanoma-derived tumour-specific cell lines [15, 82-84].

The interesting finding from the search for specific melanoma antigens is that like the previously established ganglioside and protein melanoma-associated antigens, the new ones are also present on other tumour cell types. Therefore, using melanoma-based vaccines against other solid tumours in an adjuvant setting where relapse is a compelling next step in such common tumours as colorectal, lung and breast cancer. In addition, they are likely to have their own specific antigens which may be targeted; for instance, carcinoma embryonic antigen, β -human chorionic gonadotrophin, α -fetoprotein, dopa decarboxylase, prostate-specific antigen, villin, erb-2, erb-3, CD30 etc., amongst many other possible targets.

Another way forward is to clone new tumour cell antigens from a variety of tumour types along the lines used by Boon and his colleagues [15]. VBeta-specific infiltration of a number of tumours should render this approach feasible [85-88]. Non-

MHC-restricted targets such as mucin may also make good candidates for vaccines as they are present in many epithelial tumours such as breast and pancreatic adenocarcinomas [89–91]. Moreover, mucin polymorphic mucins probably play an important role in the 'defence' of the tumour against the immune system.

OTHER STRATEGIES

Many of the approaches being applied to inducing an effective T-cell response also have their counterparts in the humoral response. For example, the variable genes of the immunoglobulin molecules expressed on malignant B-cells have been rendered immunogenic by fusing them to GM-CSF [92]. A similar approach is under study for hepatoma in which hepatoma cells are fused with activated B-cells to create an effective anti-tumour response in the BERH-2 model in rats [93]. Weak B-cell epitopes have been made immunogenic by using an anti-idiotype approach such as against melanoma-associated proteoglycan (MPG) [94,95]. The ability to make recombinant hybrid molecules, such as immunoglobulin variable gene T-cell receptor agent, opens up endless possibilities for designing cancer vaccines. Inhibition of human colon cancer growth by antibody-directed LAK cells in SCID mice has recently been reported [96].

FUTURE PROSPECTS

The ability to apply the fruits of the molecular revolution to the basic cancer vaccine approach has clearly given it a whole new lease of life. However, it is important to bear in mind that tumours are heterologous; even if they do express shared antigens, the tumours themselves may be limited by restricted MHC and lack co-stimulatory functions. Hence, population representative allogeneic cell lines should, in theory, help plug the potential "holes" in the immune response repertoire. Future prospects include the possibility of enhancing weak immune responses with immunisation of a cocktail of relevant peptides. This approach has been used to induce a CTL response specific for the p21 ras 61 mutation (and not unmutated ras) seen in many tumours [97]. A similar approach could be used for p53 mutations. Current tumour immunology dogma dictates that small tumour volumes are much easier to induce an immune-induced regression in, than bulky established tumours. Direct gene therapy approaches in such tumours may well be complementary. There are now several reports in which retroviruses containing the HSV tk gene are able to infect melanoma and brain tumours and induce tumour regression upon administration of ganciclovir which the tk gene converts to the toxic phosphorylated form [98–100]. However, what is most exciting is that the whole tumour can be killed even if only 50% of the cells are infected with the virus. This is known as the 'bystander effect'. Surprisingly, it is not all due to the immune response but appears to involve a cell-cell contact-mediated toxicity which may be due to cell-to-cell transfer of toxic molecules such as phosphorylated ganciclovir.

The next decade is going to see the resurgence of tumour immunotherapy. It will be made possible by the gene therapy techniques which allow the genetic manipulation *in vitro* of the vaccine cells [101,102]. This will allow a step-by-step approach to enable gene therapy approaches *per se* [103] (e.g. [98–100]) to be tried in the clinic. The possibility that combinations of immune-based treatments [104] may enable better control in a therapeutic situation will need to be borne in mind. Ongoing studies using known TADAs such as carcinoembryonic antigen

(CEA) [105] may provide further practical targets, in addition to those being identified by molecular means. The application of molecular biology to the understanding of tumour immunology [106] may lead to the widespread use of cancer vaccine treatments in future, so that in 10 years time they could make up over half of all non-surgical treatments.

1. Oettgen HF, Old LJ. The history of cancer immunotherapy. In DeVita VT, Hellman S, eds. *The Biologic Therapy of Cancer*. Philadelphia, Lippincott, 1991, 87–119.
2. Landsteiner K, Chase MW. Experiments on transfer of cutaneous sensitivity to simple compounds. *Proc Soc Exp Biol Med* 1942, **49**, 688.
3. Coley WB. Treatment of inoperable malignant tumours with the toxins of erysipelas and the *Bacillus prodigiosus*. *Trans Am Surg Assoc* 1894, **12**, 183.
4. Morton DL, Hunt KK, Bauer RL, Lee JD. Immunotherapy by active immunization of the host using non-specific agents. In DeVita VT, Hellman S, Rosenberg SA, eds. *The Biologic Therapy of Cancer*. Philadelphia, Lippincott, 1991, 627–650.
5. Dalgleish AG, Sikora K. Melanoma. In Waxman J, ed. *Interleukin-2*. London, Blackwell Scientific Publications. 1992, 132–144.
6. Bystryn J-C, Oratz M, Henn A, et al. Relationship between immune response to melanoma vaccine and clinical outcome in stage II malignant melanoma. *Cancer* 1992, **69**, 1157–1164.
7. Morton DL, Wanek L, Nizze JA, et al. Improved long term survival after lymphadenectomy of melanoma metastatic to regional nodes. *Ann Surg* 1991, **214**, 491–501.
8. Hanna M, Ransom JH, Pomato N, et al. Active specific immunotherapy of human colorectal carcinoma with an autologous tumour BCG-vaccine. In Bystryn J-C, Ferrone S, Livingston P, eds. *Specific Immunotherapy of Cancer With Vaccines*. *Annals Sci New York Acad* 1993, **690**, 135–146.
9. Berd D, Maguire HC, McCue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumour cell vaccine. *J Clin Oncol* 1990, **8**, 1858–1867.
10. Mitchell MS, Harel W, Kan-Mitchell J, et al. Active specific immunotherapy of melanoma with allogeneic cell lysates. In Bystryn J-C, Ferrone S, Livingston P, eds. *Specific Immunotherapy of Cancer with Vaccines*. *Annals NY Acad Sci* 1993, **690**, 153–166.
11. Mitchell MS. Active specific immunotherapy of cancer: Therapeutic vaccines ("theracines") for the treatment of disseminated malignancies. In Mitchell MS, ed. *Biological Approaches to Cancer Treatment: Biomodulation*. New York, McGraw-Hill, 1992, 326–351.
12. Hersey P. Active immunotherapy with viral lysates of micrometastases following surgical removal of high risk melanoma. *World J Surg* 1992, **16**, 251–260.
13. Wallack MK, Bash JA, Lefthemotis H, et al. Positive relationship of clinical and serological responses to vaccinia melanoma oncolysate. *Arch Surg* 1987, **122**, 1460–1463.
14. Livingston PO, Ritter O, Srivastava P, et al. Characterization of IgG and IgM antibodies induced in melanoma patients by immunization with purified GM2 ganglioside. *Cancer Res* 1989, **49**, 7045–7050.
15. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognised by cytolytic T lymphocytes on a human melanoma. *Science* 1991, **254**, 1643.
16. Dalgleish AG. The role of IL-2 in gene therapy. *Gene Ther* 1994, **1**, 83–87.
17. Stein RC, Dalgleish AG. Immunomodulatory agents: the cytokines. *Eur J Cancer* 1994, **30A**, 3, 400–404.
18. Economou J, Figlin R, Jacobs E, et al. The treatment of patients with metastatic melanoma and renal cell cancer using *in vitro* expanded and genetically engineered bulk CD8+ and/or CD4+ TIL and bulk CD8+ and/or CD4+ peripheral blood leukocytes in combination with recombinant IL-2 alone or with recombinant IL-2 and recombinant alpha interferon. *Human Gene Ther* 1992, **3**, 411–430.
19. Doudevani A, Huleihel M, Zoller M, et al. Reduced tumorigenicity of fibrosarcomas which constitutively generate IL-1 alpha either spontaneously or following IL-1 alpha gene transfer. *Int J Cancer* 1992, **51**, 822–830.
20. Bubenik J, Voitenok NN, Kieler J. Local administration of cells

containing an inserted IL-2 gene and producing IL-2 inhibits growth of tumors in nu/nu mice. *Immunol Lett* 1988, **19**, 279-282.

21. Fearon ER, Pardoll DM, Itaya T, et al. IL-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. *Cell* 1990, **60**, 3539-3543.
22. Gansbacher B, Zier K, Daniels B, et al. IL-2 gene transfer into tumour cells abrogates tumorigenicity and induces protective immunity. *J Exp Med* 1990, **172**, 1217-1224.
23. Connor J, Bannerji R, Saito S, et al. Regression of bladder tumors in mice treated with IL-2 gene-modified tumor cells. *J Exp Med* 1993, **177**, 1127-1134.
24. Kim TS, Russell SJ, Collins M, Cohen E. Immunity to B16 melanoma in mice immunized with IL-2 secreting allogeneic fibroblasts expressing melanoma-associated antigens. *Int J Cancer* 1992, **51**, 283-289.
25. Golumbek P, Lazenby A, Levitsky HI, et al. Treatment of established renal cancer by tumor cells engineered to secrete IL-4. *Science* 1991, **254**, 713-716.
26. Hock H, Dorsch M, Kunzendorf U, et al. Mechanisms of rejection induced by tumor cell-targeted gene transfer of IL-2, IL-4, IL-7 tumor necrosis factor, or interferon gamma. *Proc Natl Acad Sci USA* 1993, **90**, 2774-2778.
27. Mule JJ, McIntosh JK, Jablons DM, Rosenberg SA. Antitumor activity of recombinant interleukin 6 in mice. *J Exp Med* 1990, **171**, 629-636.
28. Mule JJ, Custer MC, Travis WD, Rosenberg SA. Cellular mechanisms of the antitumour activity of recombinant IL-6 in mice. *J Immunol* 1992, **148**, 2622-2629.
29. Porgador A, Tzchoval E, Katz A, et al. IL-6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. *Cancer Res* 1992, **52**, 3679-3686.
30. Hock H, Dorsch M, Diamantstein T, Blankenstein T. IL-7 induces CD4+ T cell-dependent tumor rejection. *J Exp Med* 1991, **174**, 1291-1298.
31. Jicha DL, Mule JJ, Rosenberg SA. Interleukin 7 generates anti-tumor cytotoxic lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. *J Exp Med* 1991, **174**, 1511-1515.
32. Dougherty GJ. Genetic modification of a murine fibrosarcoma to produce IL-7 stimulates host cell infiltration and tumor immunity. *Cancer Res* 1992, **52**, 3931-3937.
33. Aoki T, Tashiro K, Miyatake S, et al. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity *in vivo*. *Proc Natl Acad Sci USA* 1992, **89**, 3850-3854.
34. Gansbacher B, Zier K, Daniels B, et al. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. *Cancer Res* 1990, **50**, 7820-7825.
35. Asher AL, Mule JJ, Kasid A, et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. *J Immunol* 1991, **146**, 3227-3234.
36. Blankenstein T, Qin Z, Uberla K, et al. Tumor suppression after tumor cell-targeted tumor necrosis alpha gene transfer. *J Exp Med* 1991, **173**, 1047-1052.
37. Colombo MP, Ferrari G, Stoppacciaro A, et al. Granulocyte colony-stimulating factor gene suppresses tumorigenicity of a murine adenocarcinoma *in vivo*. *J Exp Med* 1991, **173**, 889-897.
38. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting anti-tumour immunity. *Proc Natl Acad Sci USA* 1993, **90**, 3539-3543.
39. Tepper RI, Mule JJ. Experimental and clinical studies of cytokine gene-modified tumor cells. *Human Gene Ther* 1994, **5**, 153-164.
40. Ding L, Linsley PS, Huang L, et al. IL-10 inhibits macrophage costimulatory activity by selectivity inhibiting the up-regulation of B7 expression. *J Immunol* 1993, **151**, 1224-1234.
41. Karp S, Farber A, Salo J, et al. Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not by tumor necrosis factor. *J Immunol* 1993, **150**, 896-908.
42. Bergui L, Schena M, Gaidano G, et al. IL-3 and IL-6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. *J Exp Med* 1989, **170**, 613-618.
43. Browning MJ, Bodmer WF. MHC antigens and cancer: implications for T-cell surveillance. *Curr Opin Immunol* 1992, **4**, 613-618.
44. Cordon-Cardo C, Fuks Z, Drobniak M, et al. Expression of HLA-A,B,C antigens on primary and metastatic tumor cells populations of human carcinomas. *Cancer Res* 1991, **51**, 6372-6380.
45. Natali P, Nicotra M, Bigotti A, et al. Selective changes in expression of HLA class I polymorphic determinants in human solid tumors. *Proc Natl Acad Sci USA* 1989, **86**, 6719-6723.
46. Smith M, Bodmer W, Bodmer J. Selective loss of HLA-A, B, C locus products in colorectal adenocarcinoma. *Lancet* 1988, **1**, 823-824.
47. Hui K, Grosveld F, Fetestein F. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cells transformation. *Nature* 1984, **311**, 750-752.
48. Wallich R, Bulbuc N, Hammering GJ, et al. Abrogation of metastatic properties of tumor cells by *de novo* expression of H-2K antigens following H-2 gene transfection. *Nature* 1985, **315**, 301-305.
49. Tanaka K, Hayashi H, Hamada C, et al. Expression of MHC class I antigens as a strategy for the potentiation of the immune recognition of tumor cells. *Proc Natl Acad Sci USA* 1986, **83**, 8723-8727.
50. Porgador A, Feldman M, Eisenbach L. H-2K^b transfection of B16 melanoma cells results in reduced tumorigenicity and metastatic competence. *J Immunogenet* 1989, **16**, 291-294.
51. Plaksin D, Gelber C, Feldman M, Eisenbach L. Reversal of the metastatic phenotype in Lewis lung carcinoma cells after transfection with syngeneic H-2K^b gene. *Proc Natl Acad Sci USA* 1988, **85**, 4463-4467.
52. Gelber C, Plaksin D, Vadai E, et al. Abolishment of metastasis formation by murine tumor cells transfected with foreign H-2K genes. *Cancer Res* 1989, **49**, 2366-2373.
53. Ferry N, Duplessis O, Houssin D, et al. Retroviral-mediated gene transfer into hepatocytes *in vivo*. *Proc Natl Acad Sci USA* 1991, **89**, 8377-8381.
54. Kim M, Herberman R, Gorelik E. Increased sensitivity to TNF-mediated cytotoxicity of B16 melanoma cells after H-2K^b gene transfection. *J Immunol* 1993, **151**, 3467-3477.
55. Mandelboim O, Feldman M, Eisenbach L. H-2K double transfectants of tumor cells as antimetastatic cellular vaccines in heterozygous recipients. *J Immunol* 1992, **148**, 3666-3673.
56. James R, Edwards S, Hui K, et al. The effect of class II gene transfection on the tumorigenicity of the H-2K negative mouse leukaemia cell line K36.16. *Immunology* 1991, **72**, 213-218.
57. James R, Grosveld F. DNA-mediated gene transfer into mammalian cells. In Walker J, Gaastra W, eds. *Techniques in Molecular Biology II*. Kent, Croom Helm, 1986, 187-202.
58. Ostrand-Rosenberg S, Roby C, Clements V. Abrogation of tumorigenicity by MHC class II antigen expression requires the cytoplasmic domain of the class II molecule. *J Immunol* 1991, **147**, 2419-2422.
59. Ostrand-Rosenberg S, Roby C, Clements V, Cole G. Tumor-specific immunity can be enhanced by transfection of tumor cells with syngeneic MHC-class II genes or allogeneic MHC-class I genes. *Int J Cancer* 1991, (suppl. 6), 61-68.
60. Ostrand-Rosenberg S, Thakur A, Clements V. Rejection of mouse sarcoma cells following transfection of MHC class II genes. *J Immunol* 1990, **144**, 4068-4071.
61. Townsend S, Allison J. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. *Science* 1993, **259**, 368-370.
62. Chen L, Ashe S, Brady WA, et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. *Cell* 1992, **71**, 1093-1102.
63. Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. *J Exp Med* 1994, **179**, 523-531.
64. Shahinian A, Pfeffer K, Lee K, et al. Differential T cell costimulatory requirements in CD28-deficient mice. *Science* 1993, **261**, 609-612.
65. Freeman G, Borriello F, Hodes R, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7 deficient mice. *Science* 1993, **262**, 907-909.
66. Hathcock K, Laszlo G, Dickler H, et al. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. *Science* 1993, **262**, 905-907.
67. Freeman G, Gribben J, Boussiotis V, et al. Cloning of B7-2: A CTLA-4 counter-receptor that costimulates human T-cell proliferation. *Science* 1993, **262**, 909-911.

68. McArthur J, Raulet D. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to IL-4. *J Exp Med* 1993, **178**, 1645–1653.

69. Lando P, Dohlsten M, Hedlund G, et al. Co-stimulation with B7 and targeted superantigen is required for MHC class II-independent proliferation but not cytotoxicity. *Immunology* 1993, **80**, 236–241.

70. Boussiotis V, Freeman G, Gray G, et al. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. *J Exp Med* 1993, **178**, 1753–1763.

71. Lukacs K, Lowrie D, Stokes R, Colston J. Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. *J Exp Med* 1993, **178**, 343–348.

72. Tamura Y, Tsuboi N, Sato N, Kikuchi K. 70kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host's antitumor immunity. *J Immunol* 1993, **151**, 5516–5524.

73. Udon H, Srivastava P. Heat shock protein 70-associated peptides elicit specific cancer immunity. *J Exp Med* 1993, **178**, 1391–1396.

74. Golumbek P, Azhari R, Jaffee E, et al. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. *Cancer Res* 1993, **53**, 5841–5844.

75. Plautz GE, Yang Z-Y, Wu B-Y, et al. Immunotherapy of malignancy by *in vivo* gene transfer into tumors. *Proc Natl Acad Sci USA* 1993, **90**, 4645–4649.

76. Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. *Science* 1993, **261**, 209–211.

77. Manthorpe M, Cornefert-Johnson F, Hartikka J, et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. *Human Gene Ther* 1993, **4**, 419–431.

78. Davis H, Whalen R, Demeneix BA. Direct gene transfer into skeletal muscle *in vivo*: factors affecting efficiency of transfer and stability of expression. *Human Gene Ther* 1993, **4**, 151–159.

79. Lynch CM, Clowes M, Osborne W, et al. Long-term expression of human adenosine deaminase in vascular smooth muscle of rats: a model for gene therapy. *Proc Natl Acad Sci USA* 1992, **89**, 1138–1142.

80. Raogt T, Vincent N, Chafey P, et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of *mdx* mice. *Nature* 1993, **361**, 647–650.

81. Osanto S, Brouwenstyn N, Vaessen N, et al. Immunization with IL-2 transfected melanoma cell. A phase I-II study in patients with metastatic melanoma. *Human Gene Ther* 1993, **4**, 323–330.

82. Chen Y-T, Stockert E, Chen Y, et al. Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. *Proc Natl Acad Sci USA* 1994, **91**, 1004–1008.

83. Gaugler B, Van den Eynde B, van der Bruggen P, et al. Human gene MAGE-3 codes for an antigen recognised on a melanoma by autologous cytolytic T lymphocytes. *J Exp Med* 1994, **179**, 921–930.

84. Bakker A, Schreurs M, de Boer A, et al. Melanocyte lineage-specific antigen gp100 is recognised by melanoma-derived tumor-infiltrating lymphocytes. *J Exp Med* 1994, **179**, 1005–1009.

85. Weidmann E, Elder E, Truco M, et al. Usage of TCR Vbeta chain genes in fresh and cultured TILs from human melanoma. *Int J Cancer* 1993, **54**, 383–390.

86. Sensi M, Salvi S, Castelli C, et al. TCR structure of autologous melanoma-reactive CTL clones: tumor-infiltrating lymphocytes overexpress *in vivo* the TCR beta chain sequence used by an HLA-A2-restricted and melanocyte-lineage-specific CTL clone. *J Exp Med* 1993, **178**, 1231–1246.

87. Pandolfi F, Boyle LA, Trentin L, et al. T cell receptor rearrangements and cytotoxic activities of clones isolated from tumor-infiltrating lymphocytes from melanoma patients. *Clin Exp Immunol* 1994, **95**, 141–147.

88. Mackensen A, Ferradini L, Carcelain G, et al. Evidence for in situ amplification of CTLs with antitumour activity in a human regressive melanoma. *Cancer Res* 1993, **53**, 3569–3573.

89. Taylor-Papadimitriou J, Stewart L, Burchell J, Beverley P. The polymorphic mucin as a target for immunotherapy. In Bystryn J-C, Ferrone S, Livingston P, eds. *Specific Immunotherapy of Cancer with Vaccines*. *Annals NY Acad Sci USA* 1993, **690**, 69–79.

90. Longenecker M, McClean G. Prospects for mucin epitopes in cancer vaccines. *The Immunologist* 1994, **1/3**, 89–93.

91. Jerome K, Domenech N, Finn O. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognise EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. *J Immunol* 1993, **151**, 1654–1662.

92. Tao M-H, Levy R. Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. *Nature* 1993, **362**, 755–758.

93. Guo Y, Wu M, Chen H, et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. *Science* 1994, **263**, 518–520.

94. Chen ZJ, Yang H, Liu C, et al. Modulation by adjuvants and carriers of the immunogenicity in xenogeneic hosts of mouse anti-idiotype monoclonal antibody MK2-23, an internal image of human high molecular weight-melanoma associated antigen. *Cancer Res* 1993, **53**, 112–119.

95. Chattopadhyay P, Starkey J, Morrow W, Raychaudhuri S. Murine monoclonal anti-idiotype antibody breaks unresponsiveness and induces a specific antibody response to human melanoma-associated proteoglycan antigen in cynomolgus monkeys. *Proc Natl Acad Sci USA* 1992, **89**, 2684–2688.

96. Takahashi H, Nakada T, Puisieux I. Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice. *Science* 1993, **259**, 1460–1463.

97. Peace D, Smith JW, Chen W, et al. Lysis of ras oncogene-transformed cells by specific cytotoxic T lymphocytes elicited by primary *in vitro* immunization with mutated ras peptide. *J Exp Med* 1994, **179**, 473–479.

98. Vile R, Hart I. Use of tissue-specific expression of the Herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. *Cancer Res* 1993, **53**, 3860–3864.

99. Li Bi W, Parysek L, Warnick R, Stambrook P. *In vitro* evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. *Human Gene Ther* 1993, **4**, 725–731.

100. Oldfield EH, Ram Z, Culver KW, et al. Gene therapy for the treatment of brain tumours using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. *Human Gene Ther* 1993, **4**, 39–69.

101. Pardoll D. New strategies for active immunotherapy with genetically engineered tumor cells. *Curr Opin Immunol* 1992, **4**, 619–623.

102. Colombo M, Forni G. Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? *Immunol Today* 1994, **15**, 48.

103. Mulligan R. The basic science of gene therapy. *Science* 1993, **260**, 926–932.

104. Eisenthal A, Cameron RB, Uppenkamp I, Rosenberg SA. Effect of combined therapy with LAK cells, IL-2 and specific monoclonal antibody on established B16 melanoma lung metastases. *Cancer Res* 1988, **48**, 7140–7145.

105. Triozzi PL, Martin EW, Gochnour D, Aldrich W. Phase 1b trial of a synthetic beta human chorionic gonadotropin vaccine in patients with metastatic cancer. In Bystryn J-C, Ferrone S, Livingston P, eds. *Specific Immunotherapy of Cancer With Vaccines*. *Annals NY Acad Sci USA* 1993, **690**, 358–360.

106. Beun G, van de Velde C, Fleuren G. T-cell based cancer immunotherapy: direct or redirected tumor-cell recognition? *Immunol Today* 1994, **15**, 11–15.